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A non-linear theory for a full cavitating hydrofoil 
in a transverse gravity field 

By BRUCE E. LAROCKf AND ROBERT L. STREET 
Stanford University 

(Received 6 September 1966) 

An analysis is made of the effect of a transverse gravity field on a two-dimensional 
fully cavitating flow past a flat-plate hydrofoil. Under the assumption that the 
flow is both irrotational and incompressible, a non-linear method is developed 
by using conformal mapping and the solution to a mixed-boundary-value prob- 
lem in an auxiliary half plane. A new cavity model, proposed by Tulin (19644,  is 
employed. The solution to the gravity-affected case was found by iteration; the 
non-gravity solution was used as the initial trial of a rapidly convergent process. 
The theory indicates that the lift and cavity size are reduced by the gravity field. 
Typical results are presented and compared to Parkin’s (1957) linear theory. 

1. Introduction 
Few cavity-flow theories consider the influence of a gravity field. This neglect 

is usually justified on the ground that the effect of gravity is not large enough to 
counterbalance the mathematical complications encountered in trying to include 
it in the analysis. In  addition, for high-speed operation (in excess of 40 knots) the 
effect of a gravity field on lift appears to be minor. Finally, many cavity flow 
solutions, as they are now formulated, cannot be extended to a proper considera- 
tion of the presence of gravity because of the attendant mathematical difficulties. 

On the other hand, a small number of pertinent cavity-flow solutions which 
consider the effects of a gravity field do exist. All of these solutions contain mathe- 
matical simplifications or approximations, which are not needed in the following 
solution, or they treat a problem containing a physical symmetry which is not 
present in the current problem. Specifically, Parkin (1957) and Street (1963) 
presented linearized theories for flows in a transverse gravity field. They also use 
an additional approximation in their treatment of the boundary conditions in 
these problems. However, Street (1965) has shown this approximation to be 
quantitatively equivalent to a fist-order solution in the smallness parameter 
l/P2, and Kiceniuk & Acosta (1966) have verified the results experimentally. 
Acosta (1961) and Lenau & Street (1965) have presented linear and non-linear 
solutions, respectively, for a wedge symmetrically placed in a longitudinal 
gravity field; symmetry considerations allowed them to treat only one half of the 
flow field and hence to deal with only one free streamline in obtaining their solu- 
tions. 

t Now at University of California (Davis). 
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In contrast to previous efforts, we present here an exact, non-linear solution to 
the unsymmetric problem of flow past a flat-plate hydrofoil, with finite trailing 
cavity, operating in a transverse gravity field and in an unbounded fluid. The 
solution is obtained via a rapidly convergent, direct iteration approach; this 
method, however, requires the use of a high-speed digital computer. 

2. General theory 
We consider a steady, two-dimensional, irrotational, and unbounded flow of an 

inviscid, incompressible, homogeneous fluid past a fully cavitating hydrofoil (see 
figure 1) .  For this flow the Bernoulli equation can be written as 

p++pq2+pgy = constant. (2.1) 

FIGURE 1. A fully cavitating hydrofoil. 

In (2.1) r, is the pressure, q is the magnitude of the fluid velocity, y is the vertical 
distance between a point in the fluid and some reference elevation, p is the fluid 
density, and g is the acceleration due to gravity. The constant above is the sum of 
the Bernoulli terms evaluated a t  the reference point at infinity where the flow is 
undisturbed. The reference elevation is chosen to be zero. Denoting reference 
quantities by a subscript 0, we obtain 

P + ;Pq2 + PgY = Po + *P& (2.2) 

Two basic dimensionless quantities can be formed from the terms in (2.2), the 
cavitation number u and the Froude number F, 

(2.3) 

where p ,  is the constant pressure in the cavity and 1 is chosen to be the plate 
length. Note that when gravity is neglected l / F 2  is zero. If qc is the fluid speed on 
the cavity free streamlines when g = 0,  then from (2.3) and (2.3) 

qc = q o ( l + ( T ) k  (2.4) 

On the cavity boundary the ratio of the fluid speed q in the presence of gravity to 
qc can be expressed in terms of the cavitation and Froude numbers as 

(2.5) 

where q and y refer to the same point on th.e free streamline. 
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To model the physical flow, we employ the single-spiral-vortex model (Tulin 
1964a); the analysis is based on the methods described by Larock & Street (1965). 
Figure 2 depicts the physical plane (z-plane) for a flat-plate hydrofoil using this 
model. The plate is inclined a t  an angle cc in a parallel fluid flow, the undisturbed 
speed being qo a t  infinity. The co-ordinate origin is placed at the stagnation point 
with the x-axis parallel to the undisturbed flow. The flow separates smoothly 
from the ends of the plate. The characteristic or reference velocity is taken to be 
qc; it  is later normalized to unity. 
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FIGURE 2. Single-spiral-vortex model. 

FIGURE 3. The W-plane for an infinite fluid. 

For the assumed model and flow, the plane of the complex potential W = 4 + i$ 
is as shown in figure 3. The W-plane, the z-plane, and the normalized complex 
velocity 5 are related uniquely by 

1 d W  q = - __ = - e-ie 
qc dz qc 

If (2.6) can be integrated, it will give the physical plane configuration as 

(2.7) 
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The crux of the problem, then, is to determine W and 5 as functions of the same 
single variable so that (2.7) can be integrated. Toward this goal we determine W 
as a function of the half-plane variable t by conformal mapping. We then observe 
that either the direction or the magnitude of the complex velocity is known at  
each point along the flow boundaries. This information, used in conjunction with 
the Riemann-Hilbert technique, will enable us to construct <explicitly as a func- 
tion oft. Once 6 is known, the fluid velocity itself is known, and the lift and drag 
coefficients of the foil can be determined by use of the Bernouilli equation. How- 
ever, it  is convenient to consider not < but the related function 

w = l n < =  ln-++(-O). q 
qc 

At a stagnation point (where q = 0), Re ( (0) now has a logarithmic singularity, and 
Im ( w )  has a jump discontinuity. The problem formulation will account for this 
behaviour . 

The general solution of the Riemann-Hilbert mixed-boundary-value problem 
in an upper half plane is well known (Song 1963; Larock & Street 1965). If the 
imaginary part of some function &(t),  Im[&(t)], is known at  all points on the 
boundary-i.e. on the real axis-then 

(2.9) 

is a regular analytic function in the entire upper half plane. It remains to relate 
w ( t )  to &(t) so that Im[&(t)] is known a t  every point on the real line. 

We map the W-plane to the t-plane so that the foil itself maps on to a finite seg- 
ment of the t-plane boundary, and the cavity boundaries are mapped on to  the 
remainder of the entire real line. Then, as we proceed from - co to + co on the real 
line, either Re(@) is known (on cavity boundaries) or Im(w) is known (on the foil). 

Following Cheng & Rott (1954), we can convert these conditions to those of the 
Riemann-Hilbert problem itself. Hence, we must construct an auxiliary function 
H(t ) ,  analytic for Im ( t )  > 0, which, on the real axis, is purely imaginary where the 
real part of w is known and is purely real where the imaginary part of w is known. 
Then the imaginary part of the quotient &(t) = w ( t ) / H ( t )  is known on the entire 
real axis, as required. 

A function satisfying the above requirements is 

H ( t )  = - i [ ( t+  l)(t-tt,)]4 (2.10) 

where - 1 and tB correspond to the ends of the foil. We choose Im[H(t)] > 0 on 
the real axis for t < - 1 and select a branch cut on the real-axis interval ( - I, tB) 
so that H(t )  is single-valued. 

The combined use of the mapping and the Riemann-Hilbert technique intro- 
duces unknown constants into the problem. Two constants may be determined 
by requiring that the flow be uniform a t  infinity, since this condition places one 
constraint on each part of the complex velocity. In  this unbounded flow it is also 
necessary to require the net source strength of the foil-cavity combination to be 
zero so that the cavity is closed. These conditions are sufficient to determine 
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uniquely a set of physical and non-physical parameters which, upon insertion 
into the proper expressions, fully describe the physical flow. 

Finally, i t  can be shown (Larock & Street 1965) that the lift L and drag D for 
the foil are related to the pressure difference across the foil by 

D + i L  = - i  (p-p,)dx, (2.11) 
J=l 

where 1 denotes integration proceeding from tail to nose along the foil. Defining 
the lift and drag coefficients, respectively, as 

(2.13) 

we can obtain an expression for (C, + iCL) as a function only of known quantities. 

3. Analysis 
We begin by mapping the W-plane on to the t-plane by choosing a three-point 

correspondence between planes to insure uniqueness of the mapping (Churchill 
1960): 

(3.1) 1 A :  W = O  t = 0, 

Q: W = e2ni  t =  -1 ,  

D: W = $ ,  ReItl +CO. 

This choice of points maps the plate-cavity boundary D2CABD, on to the real 
axis of the t-plane (figure 4). The mapping is 

where k2 = 4,- 1. (3.3) 

The solution is based upon an iterative procedure which employs the non- 
gravity solution [then g = 0 in (2.1), (2.2), (2.3) and (2.5)]  as the initial trial solu- 
tion It is highly advantageous to use known properties of the nongravity solution 
in the formulation of the gravity solution, since in each case we use the same 
cavity model (the single-spiral-vortex model) and the same solution procedure 
[see Larock & Street (1965) for details]. 

We note immediately two items in our solution technique and model which 
provide distinct advantages over other approaches to the problem. First, we 
always know the location of the two free streamlines in the t-plane. Secondly, we 
know that, beyond some positive and negative value oft, y(t) becomes essentially 
constant on each streamline because we are then in the tightly spiralling vortices 
that terminate the cavity. These two values of y(t) are yL and y, for the lower and 
upper free streamlines, respectively; the t values where the constant y values 
initially apply are correspondingly tL and t,. Thus, for t 6 tL, y(t) = yL; for 
t 2 t,, y(t) = y,. The former item always permits the referencing of information 
about the free streamlines to known locations in the t-plane, independent of the 

21 Fluid Meeh. 29 
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effects of a gravity field. The latter item allows us to avoid numerical integration 
over the infinite intervals containing the free streamliaes in the t-plane (see 
figure 4). 

For this problem gravity acts parallel to the y-axis and in the negative direc- 
tion; y = 0 is the reference elevation. According to (2.5), in the presence of 

Im(w) = a 

Im(w) = a-n 

Re(w) = t l n  

(3.4) 

F I ~ ~ R E - ~ .  The t-plane for an infinite fluid. 

We now form o(t) /H(t)  to obtain on Im ( t )  = 0: 

It can be shown (Larock & Street 1965) that w N t on the real axis as It1 -+a. 
Noting that JH(t)I N t on the axis as It1 +a, we conclude that w(t)/H(t) must 
asymptotically become a constant. Limitations on allowable singularity strength 
exclude negative powers oft in the series of (2.9). Therefore, the series can have at 
most one non-zero term corresponding to j = 0 (we let A,  = A ) .  
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The mathematical representation for w is now 

When we apply the conditions that the flow at infinity be undisturbed and that 
the cavity close, we obtain three independent equations in the unknown para- 
meters Ic, tB and A.  

At infinity, which corresponds to t = ik, we have q = qo and 8 = 0, so 

Re[w(ik)] = l n % =  - i ln( l+r r )  (3.7) 
qc 

and Im [w(ik)] = 0. (3.8) 

Parkin (1959) indicates that the net flux of fluid out of any closed contour C is 
proportional to Im fct;(z)dz. Expressing 5 as a power series in descending powers 
of z for large z reveals that the singularities of o are the same as those of 5. Hence, 
for zero net source strength, we have, with C enclosing the body-cavity system, 

cdz = Im o d z  = Im wdW = 0, 
Im f, I, $0 

using the fact that a source remains a source under conformal transformation 
(Milne-Thompson 1960). This result then becomes 

with C now enclosing the upper half plane. We calculate 

(3.10) 
dW 2k2(k2+ 1)t 2k2(k2+ 1)t 
dt ( t+ ik )2 ( t - i k )2  - (t2+k2)2 ' 

- -- - 

which is singular only at  t = i k  and asymptotically is O(t-3) so that the integrand 
o(dW/dt) is non-singular as It1 +a. Near the stagnation point on the plate, the 
integrand-as can be verified from (4.1) below-is O(t In t )  + 0 as t - t  0 and so is 
non-singular. Therefore, we obtain our third condition by applying the calculus 
of residues to (3.9). Thus, 

Imr%] = o ,  (3.11) 
t = i k  

21-2 
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or 

(3.13) 

The integrals in (3.13) are expressible in terms of the integrals occurring in w( ik )  
(see Larock & Street 1966). 

(3.13) 

These integrals are more easily evaluated first in complex form (see Larock & 
Street 1966) and then split into their real and imaginary parts. Further algebraic 
manipulation will then yield the final equations resulting from the application of 
the boundary condition equations (3.7), (3.8) and (3.12). 

The three equations ultimately resulting from the boundary conditions are 

$ln ( + - APl = pill - p Z r Z  -$ [15(tL? - 1) -Ifi(tB, t t , 7 ) I  + kA [ I 6( t L? - l)  

3n 

47r 
and 



(3.16) 

( 3 . 1 7 ~ )  

(3.17 b) 

( 3 . 1 7 ~ )  

(3.17 d )  

(3.17e) 

(3.17f) 

(3.179) 

(3.17 h) 

(3.17i) 
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(3.17j) 
P4 = 2p2+ 1 -t,, Q4 = 2(k-P1),  

with 
(tan 

Assuming the right sides of (3.14), (3.15) and (3.16) to be known, we can solve 
them for In (1 + cr), a and A from given values of Ic, t, and F2. For the right sides 
to be known, however, the free-streamline ordinates y ( t )  must be known or 
approximated in some way. The same is true for c and I ,  which also appear on the 
right side of the equations. In  what follows we assume that cr, a and A are known 
quantities satisfying (3.14), (3.15) and (3.16). 

4. Results 
Results include the lift and drag coefficients and the plate-cavity configura- 

tion. We normalize on the non-gravity free-streamline speed so that qc = 1 in the 
expressions which follow. 

On the plate we obtain, upon integration of (3.6) for - 1 Q t < t,, 
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where 

is a continuous function oft. It can be shown that 

and 

A numerical investigation indicated that the last two terms of (4.1) (each begin- 
ning with the factor +n-) are usually extremely small and have no influence upon 
the results. These two terms will be deleted from the final expressions for the plate 
length and the force coefficients, but the addition of these terms to the expres- 
sions is straightforward. Applying (2.7) and (2.8) then gives the plate length 

1 = I,( - 1, tB) ,  (4.4) 

The end-point co-ordinates of the plate are 

z; j  = xB+iyB = (-cosa+isina)l,(O,t,), 

zc = xc+iyc = (+cosa-isina)Ip(-l,O). 

(4.6) 

(4.7) 

Expressionsfor thelift anddrag coefficients arederivednext. From theBernoulli 

(4.8) 

equation (2.2), 
2 1 1 2 y  P-Pc - - - - - = 1 - -  - _ _ _ _  

( P P )  q2 (3 1 + v F 2  1 ' 

Using (2.11) and (2.12) gives 

cD+icL = - i  (5) ll [ I  - ($)2-Fg p -j- 'y]a2 

or 

and 

1 1 1  
1 + (T F2 I? 

1 1 1  
l + g  F 2  Z2 

CD= (l+Ic)sina+-- --(&-&) (4.10) 

(4.11) CL = (l+&)cosa+-- -(x$-&)tana, 
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(4 .12)  
dt 

x exp ( A  [ (t, - t )  ( 1 + t)]4 + J1( t )} __--- 
(k2 + t 2 ) 2  * 

We next determine w ( t )  on the streamlines as 

1 + t )  ( t -  t,)]& 
o ( t )  = i a + + l n  

t ( l+t , )  

1 1 1 2y, -In [ l+crF2 1 

x In 
2 [ (  1 + t )  (t  - tB)]+ + 1 - tB + 2t 

(4.13) 

where the ( + ) signs apply for t 2 t,, and the ( - ) signs are used for t < - 1. The 
function J ( t )  is defined to be 

-77 

fort < - 1. Further investigation shows that J ( tB)  = J (  - 1) = 0. Upon substitu- 
tion into (2.7), we find that the parametric representation for the streamlines 
which form the cavity boundary are 
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where 

For the upper streamline xo = x,, yo = yB,  to = t,, t > t,, and the (+ ) sign is 
used in B(t). For the lower streamline xo = xc, yo = yc, to = - 1, t < - 1, and the 
( - ) sign is used in B(t). 

5. The solution procedure 
We consider the nature of solutions to the Laplace equation, our governing 

partial differential equation. The Laplace equation is elliptic; physically, this 
means that the boundary value data at each point on the boundary of our flow 
will affect the solution at  every other point in the flow and, in particular, along 
the rest of the boundary. Equation (4.17) illustrates this property quite 
clearly. 

Equation (4.17) purports to give an expression for y( t ) ,  which is found on the 
left side of the equation. But y( t )  appears in the denominator of the integrand, 
and the integral of a function containing y( t )  appears in J( t ) ,  which in turn 
appears in B(t), a factor in the integrand. In  addition, a, 5, A and 1 were determin- 
able only because y( t )  was assumed to be known. In  fact, the equations of §§3 
and 4 may be thought of as a set of integral equations which define y(t).  These 
equations are of such complexity that most formal methods of integral equation 
theory are not useful. However, some integral equations are commonly solved by 
successive approximation, and proofs of uniform convergence and uniqueness of 
the solution are available for certain simple cases (Mikhlin 1964). 

On the other hand, most analyses neglect gravity effects on the ground that 
they are relatively small (we postulate that they are not negligible, however). If 
this premise is true, then the non-gravity solution of Larock & Street (1965) 
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should be a good approximation in some sense to an associated flow which is 
a.Eected by gravity. In so far as the term 

is small compared to unity, we are assured by the continuity of the Laplace 
equation (small changes in boundary data produce small changes in the solution 
[Weinberger 1965, p. 61) that the preceding is true. Then, if the problem has been 
properly formulated, i t  should be possible successively to improve upon the 
initial approximation until, after a sufficient number of 'improvements', the cor- 
rect solution to the gravity problem is indeed found. In  our iteration method the 
Gomplete solution is computed in each cycle. This procedure is in contrast to the 
perturbation method of solution in which the initial problem is expanded into a 
series of problems, each representing a different magnitude of approximation in 
an asymptotic solution. In  the perturbation method, accuracy is improved only 
by the successive, complete, and exact solution of the next higher order-of- 
magnitude problem. 

The iteration procedure for the present problem works in the following manner. 
1. A suitable choice for k and tB is made; more will be said later (see $6) on 

what constitutes a suitable choice. 
3. The non-gravity solution ( g  = 0) is completed for this E and tB; the para- 

meters and the physical plane (especially y(t)  on the streamlines) are determined. 
We note that when g = 0 all results can be obtained without prior knowledge of 

3. Newa, crand.4 arethencomputedfrom (3.14), (3.15)and(3.16),usingdata 
from step 2 where appropriate. The function J;(t) i s  determined next, and 1 is 
computed [cf. (4.2) to (4.5)]. Then the gravity solution is completed, using y(t) 
from step 2 and the newest values of a, G,  1 and A immediately in succeeding 
calculations. 

4. Another gravity solution is computed, using the data from the previous 
iteration as input data. 

5. Step 4 is repeated until the results of two successive iterations differ by less 
than some specified amount, at  which point computations are terminated. The 
solution to the gravity problem has then been found. 

The method just described has several desirable features. It is direct and simple. 
It will theoretically produce a solution to any desired accuracy; one need only 
complete more iterative cycles to obtain a better solution. Practically, however, 
an iterative method of solution is useful in proportion to the rapidity of its con- 
vergence to the true solution, In  this last regard the present method excels, 
having stabilized after only two complete iterative cycles in some typical cases to 
answers accurate to three significant figures. 

The only drawback to this method is that the computation of one iteration is a 
lengthy process, even for a high-speed digital computer. The involved nature of 
the expressions being handled is the cause; specificalIy, the construction, by the 
use of a finite number of points and interpolation, of a reasonably accurate 
approximation to the continuous functions J ( t )  and q(t) is laborious. In  fact, the 

Y(t). 
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work involved in obtaining a solution to the gravity problem is such that the use 
of a high-speed digital computer is mandatory. Methods of adapting the equa- 
tions of $93 and 4 so that they are more amenable to digital computations are 
given in Larock & Street (1966). 

6. Discussion 
Figure 5 indicates how the cavity streamlines and the various other para- 

meters of the problem change when we iterate upon the initial non-gravity solu- 
t,ion to obtain the solution to the gravity-affected problem. We note that k and 
t ,  are held constant, and F2 is prescribed. All the other parameters and results of 
the problem change; the direction of these changes can be noted from the figure. 

o 4  t _________--- -+--. -. 

6 8 

----- - _ _ _ _ _ _  + _ _ _ _ _ _ -  - 

YP 

-04 -- 

-06 

F2 = 20 k = 3.70 'ZI = 000794 

FIGURE 5. Cavity streamlines before and after iterations : the transverse gmvity field 
effect. --- , before iteration, a = 10.lo, u = 0.100, CL = 0.249, CD = 0.0444, 
A = -0.00640, I = 1.165; -, after iteration, a = 10.70, u = 0.092, CL = 0.248, 
CD = 0.0469, A = -0.00632, I = 1.158. 

These quantities always vary in this fashion as a result of the iteration process. 
Knowledge of this behaviour is an aid in choosing the proper k and tB for the, 
problem of interest. In  particular, a always increases and u always decreases. 
during the progression from initial approximation to final gravity solution. No 
quantitative rules have been established regarding these changes; however, a 
smaller value of F2 produces larger relative changes in a and u, and larger changes. 
in a and (T occur when a and (T themselves are larger. Consequently, if we wish to, 
choose k and tB to produce a given a and u in the presence of a gravity field, we 
choose the k and t, which would produce a lower ct and a higher u than actually 
desired (see figure 4, Larock & Street 1965). This rule enables us to produce a; 
gravity solution which is close to the one desired; thereafter, numerical experi- 
mentation is used to produce the precise a and u desired. Thus, a gravity solution 
for a problem which is close to the desired solution is quickly found, but the solu- 
tion for a precisely specified a and CT is more difficult and tedious to find. 

A gravity solution for a given a and B could be found by varying k and ts in 
some fashion from iteration to iteration; we discard this approach for several 
reasons. Once k and t, are set, the approximate size of all quant'ities in the solu- 
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tion has been set, since k and tB are the two fundamental non-physical para- 
meters of the basic equations. To vary k and t ,  would then change all quantities 
in the problem in some relatively unpredictable fashion. Because the funda- 
mental equations are non-linear, it would be very difficult to establish even 
qualitative rules for the systematic adjustment of r% and tB to achieve a given 
solution, 

Section 5 indicated that the convergence of iterations to a stable solution is 
quite rapid. Table 1 shows this convergence for the case depicted in figure 5. 
Iteration Ois the non-gravity solution. Essentially, the streamlines didnot change 
position after the first iteration (figure 5). We see that the streamlines did shift 
position, however; the primary change is a slight rise in the streamlines toward 
the aft end of the cavity. 

Iteration 010 U CL 
0 10.0928 0.100203 0.249392 
1 10.6558 0.093689 0.249233 
2 10.6950 0.092677 0.248544 
3 10.6928 0.092540 0.248495 

TABLE 1. Iterations of gravity solution 

The effect of a transverse gravity field is seen most easily when we compare the 
gravity and non-gravity cases for the same attack angle and cavitation number. 
Two comparisons are presented in figures 6 and 7. I:n each case the gravity solu- 
tion was constructed first, and a non-gravity solution was then matched to the 
gravity solution so that 01 and u were the same. 

Figure 6 matches the gravity solution of figure 5 with the equivalent non- 
gravity solution for a = 10.7" and u = 0.092. The non-gravity solution requires 
larger values of k and t ,  than does the gravity solution. Also, the lift coefficient 
for the gravity solution is about 4 % lower than that, for the non-gravity solution. 
The cavity for the gravity solution is significantly smaller than, and lies entirely 
within, the gravity-free cavity. 

The real power of the present theory is graphically demonstrated in figure 7, 
which shows the gravity and non-gravity solutions for 01 = 32.16" and = 0.282. 
By contrast, Parkin's (1957) linearized theory is limited to attack angles of 5" or 
less. For a: = 32O, there is only a 2 yo change in the lift coefficient due to the in- 
fluence of the transverse gravity field, but there is a large difference in cavity size 
and shape. 

The relation between cavitation number and lift coefficient for several Froude 
numbers at  attack angles of 5" and 10" is depicted in figure 8. We note several 
items of interest. The effect of gravity is always to reduce the lift coefficient from 
that value which a gravity-free analysis predicts. For attack angles of 10" or less 
the effect of gravity on lift is always small and in many cases can be safely neglec- 
ted. Moreover, the effect of gravity increases with decreasing cavitation number. 
This means that longer cavities are more greatly affected by gravity than are the 
shorter ones. As the attack angle increases, the effects of gravity persist to higher 
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cavitation numbers, e.g. see figure 7 where cr = 0.282. The lines corresponding to 
F2 = co were derived from the non-gravity solution of Larock & Street (1965). 

The present theory is compared with Parkin's (1957) linearized transverse- 
gravity hydrofoil theory in figure 9. Parkin's problem is fully linearized with 
respect to both the boundary conditions and their points of application; the 
effect of gravity is approximated by the use of a constant, average-value gravity 
term on the cavity boundary. His non-gravity solution is obtained by setting the 

T 

-1 1 
FIGURE 6. Effect of transverse gravity field, a = 10.7O, d = 0.092, F2 = 20. ---, no 
gravity, k = 4-25, tB = 0.0089, A = -0.00515, CL = 0.259, c~ = 0.0490, 1 = 1.174; 
-, gravity, k = 3.70, t~ = 0.00794,A = - 0.00632, CL = 0.248, CD = 0-0469, I = 1.158. 

L - 1.5 

FIGURE 7.  Effect of transverse gravity field, a = 32.16O, (r = 0.282, F2 = 9. --- , no 
gravity, k = 4.656, 8 = 0.08417, A = -0.01326, CL = 0.510, CD = 0.321, I = 1.695; 
-,gravity, k = 3.750, t~ = 0.07000, A = - 0.01783, C L  = 0.504, CD = 0.317,Z = 1.581. 

average-value term to  zero, and for a = 5" his result is plotted on the figure. Also 
shown are Parkin's results for P2 = 16 and the corresponding results from the 
present theory, all for a = 5". Both with and without gravity, Parkin's theory 
gives higher values for the lift coefficient than does the present theory. This is 
consistent with his linearization method. In  addition, Parkin's gravity effect is 
greater and persists to higher cavitation numbers than does that of the present 
theory. On the other hand, the theories agree generally and predict the same 
trends of behaviour. 

The present theory and Parkin's theory agree on items other than lift- 
coefficient behaviour . Both theories predict that the gravity-affected cavity lies 
entirely within the non-gravity cavity. This agreement suggests that the result is 
a general one. Parkin also notes that longer cavities (low c) are more affected by 
gravity than are the shorter ones (that this should be so is intuitively clear). This 
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Finally, we would like to consider the case CT = 0 in the presence of gravity. In  
this case, however, it is not possible to approach the problem directly. We are 
thwarted because when g = 0 there is no close approximation to a finite cavity 
for u = 0, although Tulin (1964b) indicates that a cavity of finite extent does exist 
for u = 0 in the presence of gravity. There is an approach which appears fruitful, 
but it has not been tried because a sizeable amount of computer time seems to be 
needed and is not presently available. The approach is based on one of our earlier 
observations. When we iterate on a non-gravity solution where CT > 0,  the attack 
angle increases and the cavitation number decreases under the influence of 
gravity. If an initial non-gravity solution is chosen which has a low cavitation 
number, it appears, for some particular Froude number, that the iteration pro- 
cess might very well produce a case where u = 0,  g + 0, and a finite cavity exists. 
This case appears worthy of future investigation. 

The present results indicate that the effect of a transverse gravity field can be 
neglected in many practical cases. Indeed, if a 10 yo error in force coefficients can 
be tolerated, then figure 8 shows that the influence of gravity can always be 
neglected for a < 10" and CT > 0.03. We have also seen that lower Froude num- 
bers indicate that larger gravity effects can be expected. (We might note here 
that for a hydrofoil craft with hydrofoils of 4ft. chord, travelling at  35 knots = 50 
ft./s, F2 = 27.) However, because the cavity length and shape are important in 
many design considerations the effect of a gravity field always should be given 
consideration. 
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